United States Patent

US009442949B2

(12) (10) Patent No.: US 9,442,949 B2
Velury et al. 45) Date of Patent: Sep. 13, 2016
(54) SYSTEM AND METHOD FOR ;,;gg,ggg gé* ggg}g \B/inkataﬁhw PO 711/108
s s attacharjee et al.
COMPRESSING DATA IN A DATABASE 2003/0191740 Al* 10/2003 Stark GOGF 17/30864
. . . 2003/0208503 Al* 11/2003 Roccaforte GOGF 17/30592
(71) Applicant: FutureWei Technologies, Inc., Plano, 2005/0237938 Al* 10/2005 Corl et al. ..oovvevvrveeo.. 370/235
X (US) 2008/0222136 Al 9/2008 Yates et al.
2010/0223237 Al 9/2010 Mishra et al.
(72) Inventors: Ramabrahmam Velury, San Jose, CA 2010/0287160 Al* 11/2010 Pendarccooooovveenne 707/737
(US): Jihui Tan, Shenzhen (CN); 2012/0136889 Al* 5/2012 Jagannathan et al. 707/769
Guangcheng Zhou, Shenzhen (CN) OTHER PUBLICATIONS
(73) Assignee: Futurewei Technologies, Inc., Plano, Dehne, Frank, et al., “Compressing Data Cube in Parallel Olap
TX (US Systems,” Data Science Journal, Mar. 2007, 18 pages.
us)
Goldstein, Jonathan, et al., “Compressing Relations and Indexes,”
(*) Notice: Subject to any disclaimer, the term of this ICDE °98 Pr_ocee(_ijngs of the Fourteenth International Conference
patent is extended or adjusted under 35 on Data Engineering, Feb. 23-27, 1998, 10 pages.
U.S.C. 154(b) by 260 days International Search Report for Application No. PCT/CN2014/
> M ys- 073404 mailed Jun. 18, 2014.
(21) Appl. No.: 13/804,321 * cited by examiner
(22) Filed: Mar. 14, 2013 Primary Examiner — Alex Gofman
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Slater Matsil, LLP
US 2014/0279964 Al Sep. 18, 2014 (57) ABSTRACT
(51) Tnt. Cl A method of compressing a plurality of multi-dimensional
G0;$F 1 730 (2006.01) keys includes receiving, by a computer, the plurality of
HO3M 7730 (200 6. o1) multi-dimensional keys, where the plurality of multi-dimen-
GOGF 15/16 (200 6. o1) sional keys have a first length and determining a first
5 US. Cl ’ plurality of bit slots that are common among the plurality of
(2) CPC ‘G06F17/30153 2013.01): GOGF 17/30592 multi-dimensional keys, wherein the first plurality of bit
2013.01): H0§M 7/'30)’2013 o1 HOIM slots are not a prefix. Also, the method includes forming a
(01); (7 30 8.4)2’ 013.01 mask indicating the first plurality of bit slots and forming a
. . . (01) pattern indicating values of the first plurality of bit slots.
(58) Field of Classification Search Additionally, the method includes determining a second
gPC Corll.lbltl?anogl seft(s) only.l . 1 hist plurality of bit slots that vary among the plurality of multi-
c¢ application hile Ior compliete search istory. dimensional keys and forming a plurality of compressed
(56) References Cited multi-dimensional keys indicating values of the second

U.S. PATENT DOCUMENTS

7,630,996 Bl
7,647,291 B2

12/2009
1/2010

Hershkovich
Mosescu

plurality of bit slots. Further, the method includes storing the
mask, the pattern, and the plurality of compressed multi-
dimensional keys.

17 Claims, 11 Drawing Sheets

TRANSFER TO BINARY BITS@ /— UNCOMPRESSED PAGE
1.2 3 4.5 6 7 8 910111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28
oJo]o[1]ofole]1]e]o]o]*]ofolo]]ele]o]1]o]oJo]]e]olo]r 210
ofojof1]ofojoft1]|oc|o|o|s]o]jc|1|o|o|ef[o]|t1]ojojo]r|[o]jef1]0O
ofofo[1[oofo[1 olo]o+]ofo[A 1o o[t [o]ofo1 o]0 0]["
0j0jojt]jojofof1[{o|Dj0]t|O]1]|0]jOojo|B|of1]jofojof1{ofa]|1]O
ORIGINAL DATA
MASK THE SAME BITS N COLUMN@
12 3 456 7 8 91011121314 15161718 19 20 212223 2425 26 27 28
oTo oo fo oA o] oo 1]0T0 oo ofe] o1
0 110 [0 0 o1 [0+
Lo 1] 100 0 oo
3 ; BES 000t ofdolo] 1o
GET THE MASK AND PATTERN@ /_ COMPRESSED PAGE
MASK
Edafdaf e frda g efalo ToTo Prfefafaf e Erfafsf oo Jo] [oTe 1o s
216 0j1(0[1]8
214 paTTERN oft[1]o[1h 54g
fofofof TofofolnfofoFoftfolo o]0 fofefoF1FoFoFof1Tofeolo] [1]o]ol1]0

U.S. Patent Sep. 13,2016 Sheet 1 of 11 US 9,442,949 B2

100

N\ 102
s

p N
AD-HOC SPREAD
[DASHBOARDS) [REPORTS j [ANALYSIS) [SHEETS)
y A 3 y 11 A
L J
J— S N
p)
DATA DATA DATA DATA
MART MART MART MART
MOLAP
106 N
\ 104
(SOURCE DATA)

[ERP/CRM)[LEGACY DATA J[RDBMS/OLAP J

OTHER
[FLAT FILE/EXCEL) [APPLICATIONS) [LLOCAL DATA]

. J/

FIG. 1

U.S. Patent Sep. 13,2016 Sheet 2 of 11 US 9,442,949 B2

120
DASHBOARD OLAP OLAP DASHBOARD

114 114 114 114

\ \ / /
- 2
= 0003 = @ = © = 0000
S EEIL = bl =TT = = Rz =18
A f | A 4
\. J
- “
Y Y Y) J
MOLAP DATA PROCESS FLOW
/ A
124 '1/26 MOLAP
4)
IN-MEMORY
Y
Y FACT STORE
DIVENSION STORE AGGREGATE STORE
7k A [
128 130 132
\ y
\ J

Y v
DATABASE DATABASE 136 l
4

134 FIG. 2

US 9,442,949 B2

Sheet 3 of 11

Sep. 13, 2016

U.S. Patent

S DOIAd
$39vd mmoﬂa 539Vd
V3T 4 q .w% ,_, 4 JVES
761~] YO _ .6l
T 6 8 g 4
$39vd 1}
TYNYILNI) (
261~
z6 ey ze 1z bl 8
261" ‘_, 261
S39Vd S39Vd
TYNYILNI 1 (WNYALNI
£y 12 /
061
£ DId
m@m.v ‘00 Jto\swmz YIS ueleasny ﬂmaa_cw mm_o\ﬁ:owosu elisque) Eljessny Q94 1810
(el "00) ‘SJ0109)|0) uBleaSnY paddiys | sspfosoiopn foupfg eleasny go4 LH1D
wmmmm ‘00 “fo\émz U5 ueljelisny Umaa_sw mm_o>290_2 aueqsug ynog elessny Js4 PNC.G
950'g '07) '540)99]|00) uBlRAsSNY paddiyg | sapphoioion SUINOq 1N elensny qe4 LD - 0lL
Sa[eg Jawoysng adA| aur I\l Ajunon Syuopw s1ouend)

US 9,442,949 B2

Sheet 4 of 11

Sep. 13, 2016

U.S. Patent

v "DIA
@@/_‘4 881
89C'v ofv)ofojLjofojofL)oefojojofojifojL|0(0|0|L]|0O]J0[O]+[0]0]0
G9¢e'9 blojalofbvjofojofL)ofjofojbifLjofclLjofojo|L]|0O]j0fO]s[0]0]0
88¢'s gfr{ofofL|Ojo|O)js|{oOfofofOjL]oO]jC|L|O|O|O|L|OfOfO]|L]|O]O]O
950'8 b{ofofOfL|O|C|O)L|OfOfOfL]OJO]|C|L|O|0|O|s[O[O[O)}L]0]0]0O
BC e SeveezdedilcocelgliobsbylelelliObe 8 L 8 G ¥ € ¢ U
@m._._m Ol 3LVISNVHL
89¢C'y ClLf{bwb]b]
G9€'9 LIV V]efb]bft
882'G gl fe])]t
Vad s
981 Teso'g [[] Tve
NOISSFHIINOD AHYNOLLOIA ¥314vY
89Z'y ¥ eljaquen
§9€'9 € Aouphg
88C'G ¢ 00 SHomieN Hig) uelelsny ¢ oueqshg yinog
950'8 L op'siopajod uelensny | |1 paddys| [1 sepkosoion | |1 sumogepy | |1 elessny | || G| |1 WD |
28l Z8l 28l 8l Z8l ¢8l ¢8l Z8l

U.S. Patent Sep. 13,2016 Sheet 5 of 11 US 9,442,949 B2

’1/95
PAGE HEADER
KEYS
VALUES

FIG. 6

US 9,442,949 B2

Sheet 6 of 11

Sep. 13, 2016

U.S. Patent

L "DId
4 N
817 ofvfofols] {olofotoftibotofolfolotolo]o]ofoliefototfotofodtototo]
Lo v]o ANdELYd 7
oft]or]o 9l¢ v
violv[ofo] {olobutvbbuivEvfvfvbvlo oo fefefbvbviv bbbt b
HSYIN
A S
SOV 03853400 NH3L1Yd ANV XSYN IHL 139
10 olo]t (0 0070
10 biv]o 0 0010
1-0: R 0; 0:}-03:0:
oL 1o Lliofof 0; 0:1:0:1:0:
ic 02 6L 81 21 9L GF L €L ¢ L1 Ol L g
NAINTOO NI SLi9 INVS IHL MSVIN
(" ™
V.1VQ YNIDIHO
or1v{o|ofi|ofOjofb]|Of[O|O|O|OfL|O]L]O[O|O[L]OfO)O[L]|O[0]|O
Flojo|ojblojofofb|ofO|O|L[L]OlO]L)Of(O|Of[L]O(0O)0(L]|O[0O]O
o1L{o|0fb|Of[O)OfL]|O[C|O|O|L|C|O|L]C[O|O(L]O|O)O[L]|O0O[0]0
oeN\vvooowooovooo_‘ooo_\ooovooorooo
8¢ [9 Gyl ecccicOc 6L AOLSGLPLELCLLLOLG 8 L 9 & % € C |
. S

J9Vd GISSTHINOINN ’\

@ S119 A4YNIG OL Y34ISNYHL

U.S. Patent Sep. 13,2016 Sheet 7 of 11 US 9,442,949 B2

142~ OBTAIN RECORD

!

144 ~ | PERFORM DICTIONARY
COMPRESSION

Y

146 ~_| CONVERT INTO BIT SEQUENCES
AND CONCATENATE

!

DETERMINE MASK, PATTERN,
1541 AND COMPRESSED KEYS

!

STORE MASK, PATTERN, AND
160" COMPRESSED KEYS IN
INDEXING STRUCTURE

FIG. 8

220

222~ OBTAIN SEARCH KEY

!

224~ COMPARE SEARCH KEY
TO MASK AND PATTERN

DOES
SEARCH KEY MATCH MASK AND
PATTERN?

NO MATCH

Y

530 COMPRESS iEARCH KEY (NO MATCH FOUND . 228
SEARCH FOR COMPRESSED
SEARCH KEY AMONG |0 MATCH
232-"| COMPRESSED KEYS
[aatcr

534 A watcHFOUND) (No MATC‘;-! FOUND h_ 938
FIG. 11

US 9,442,949 B2

Sheet 8 of 11

Sep. 13, 2016

U.S. Patent

092~} 8¥re

- } b}
HOWV3AS AYVNI .E..H

ﬁmmx ommmmmn__\,_oozomﬁw
NY3Ll1lvd - $83D0NS HOLYIN NYILLYd

@vm/r@o [oofobtofofolfotolofo]o]ofofibotoloftototolifolol G
oz Atlofofofifofofofifofotoft [v[ofofrfofofofriofofofifofofo]

ADIHOHYIS
SV

44 A JofeTofvTofefof

0wo_§v
*"‘OV‘-:V"-.O
O““—-\%‘O
Ooo:_.c"‘:._.‘—

@zmmt&m HLIM SNIANT0D GINSYN HOLVYA

Lofoto] v [+ o fofvEobodol-fofolollod oo
Aﬁ ASYIN Y314V ViV TYNIDIHO
e | LN I O T T e T TS T S I I A A e e A R R T T G
ommmmmw%%l/ v_mNM_\,_N\q_P_Q_o_o_F_o_o_o_w_o_o_o_\Nm_v*ﬂvm_,‘_m_cm_F_O_o_o_r_c_c_o_r_o_o_o_
(HOLVIN A3M LOVX3
[oTofofofiTolofolrFofofo]o]o]o [0 0] 0] 0] oo fo L o]0 0]
A NgELvd 1z
91¢ S
Lofoffdvivividdviviriofofofrdrivivivivivivirfvi vy

ASYIN

~

—|lo|—|—|o

Q||| D
S|

|||

b
0
0
3
0

US 9,442,949 B2

Sheet 9 of 11

Sep. 13, 2016

U.S. Patent

39Yd
d38S34dN0D

Il// ¢9¢

T

05z~ f 99z

- NH311vd HOYV3S
HOYv3S J3SS3A4N0D

@Iomx‘mw 0lslig 139

ol|l~|+~|[+~|o
olo|lo|o]~

B T To o fxx e epe]ocxx Exfoxc]xe]x]
NY31L1Vd HOHV3S Q3MSYI

NY3LLYd ONY MSYIN HLIM
NHFLLVd HOHV3S LNANI HILYWN

{olofotofifolotofvtofofo]ofofofofifotolofilofotof-folofo]
A NELYd 1z
0iz b
PoTo vy e o ToTo FrEr]
ISV

fxcpxbxfxcx]y [] oo pxfxlxxl
NY3LLVd HOWV3S

cpxcbxebxfxdxel v

4

Lofofofofifofofofifojofojojofofofifofofopitofofofifofofo]

A NHALYd 17

9lz b

OO

D~ |||

—|o|—|—]o

O~ |~ ||

OO |O ||

1 R T % % B I N T s oes os o

ASYW

US 9,442,949 B2

Sheet 10 of 11

Sep. 13, 2016

U.S. Patent

¢l "'DId

[TTofofov fofofolvfofofa] v oo ol fofofof+ fofofofi fofofol vee

S1I8 MSYIA NOWNOO NO NHZL1Vd NOWNOD ONIATddY H3L4V A3 TYNIOIHO

tLfof:

R R S T A T S % I I N e e A s A e e 8 .U.T.M.T.H._L\ e

NSV ONISN G3ANVAX3 AIN G3SSIFHANOD

BOBDoNE

A QISSIHANOD

to]ofofofifotololidotofo]o]o]olofifofofolfololofifololo]

A NYELYd py7

9iz e

hoaadll [can BN B wendll B sandll I ane }

Q|| |O |

Q|| O

o|l—|~—|—|o

Loy R anjy ey Rlane 1 B e

folofeivivbrvbvtvin vl ool o Fefubvfviv v bvivieiviy

MSYI
3OVd l\

G3SS3ddN0D

U.S. Patent Sep. 13,2016 Sheet 11 of 11 US 9,442,949 B2

300

’/

302 EXPAND COMPRESSED
™ MULTI-DIMENSIONAL
KEY BASED ON MASK

!

304 PATTERN ADDED TO
™ EXPANDED SEARCH
KEY BASED ON MASK

!

EXPAND USING
3061 DICTIONARY

FIG. 13

270

274
\ 276
CPU — /
— MEMORY
278
\ VIDEOQ
\
NETWORK NETWORK — 280
INTERFACE | | | 0 MOUSE/KEYBOARD/
/ INTERFACE PRINTER
284 N
288

FI1G. 14

US 9,442,949 B2

1
SYSTEM AND METHOD FOR
COMPRESSING DATA IN A DATABASE

TECHNICAL FIELD

The present invention relates generally to a system and
method for compressing data and, in particular, to a system
and method for compressing data in a database.

BACKGROUND

Databases are systems used to efficiently store and
retrieve vast amounts of information. An example of a
database system is an online transaction processing system
(OLTP), which is used in day to day operations of a business.
OLTP systems deal with short online transactions like insert/
update/delete operations on a database. Also, OLTP systems
deal with current business data.

Another example of a database system is an online
analytical processing system (OLAP), which is a database
storing business data to enable efficient analysis of data.
OLAP systems are used in preparation of reports to man-
agement based on business data and in the management of
business performance through activities like planning, bud-
geting, and forecasting. Unlike OLTP systems, OLAP sys-
tems deal with analytical queries which are low in volume
compared to transactional queries, but involve complex
queries with a large amount of processing of data.

OLAP systems view business data as a collection of facts.
Each fact is a data point characterized by a set of dimensions
and a set of measurement values. With the multi-dimen-
sional perspective, users can view data by slicing and dicing
along different dimensions to get an in-depth understanding
of data by identifying useful patterns within the data, which
can be used to improve the future performance of the
business. An example of an OLAP system is a relational
OLAP system (ROLAP), where data is stored in a relational
database. Another example of an OLAP system is a multi-
dimensional OLAP system (MOLAP), which is a database
that stores business data in a custom multi-dimensional
format.

SUMMARY OF THE INVENTION

An embodiment method of compressing a plurality of
multi-dimensional keys includes receiving, by a computer,
the plurality of multi-dimensional keys, where the plurality
of multi-dimensional keys have a first length and determin-
ing a first plurality of bit slots that are common among the
plurality of multi-dimensional keys, where the first plurality
of bit slots are not a prefix. Also, the method includes
forming a mask indicating the first plurality of bit slots and
forming a pattern indicating values of the first plurality of bit
slots. Additionally, the method includes determining a sec-
ond plurality of bit slots that vary among the plurality of
multi-dimensional keys and forming a plurality of com-
pressed multi-dimensional keys indicating values of the
second plurality of bit slots. Further, the method includes
storing the mask, the pattern, and the plurality of com-
pressed multi-dimensional keys.

In accordance with another embodiment, a method of
searching for a first search key includes receiving, by a first
computer, from a second computer, the first search key and
determining if the first search key matches a first pattern and
a first mask. Also, the method includes determining if the
first search key matches a first compressed key and the first
mask without decompressing the first compressed key when

10

20

30

35

40

45

60

2

the first search key matches the first pattern and the first
mask and indicating, by the first computer, a successful
match when the first search key matches the first compressed
key and the first mask.

An embodiment method of compressing a plurality of
records includes receiving, by a first computer, a first record
of the plurality of records and comparing a first bit in a first
bit position of the first record to a second bit in the first bit
position of a second record of the plurality of records. Also,
the method includes assigning a third bit in the first bit
position of a mask to a first binary value when the first bit
of'the first record does not equal the second bit of the second
record and assigning a fourth bit in the first bit position of
a pattern to a first binary value when the first bit of the first
record does not equal the second bit of the second record.
Additionally, the method includes assigning a fifth bit in a
second bit position of a first compressed key to a value of the
first bit of the first record and assigning a sixth bit in the
second bit position of a second compressed key to a value of
the second bit of the second record. The method also
includes comparing a seventh bit in a third bit position of the
first record to an eighth bit in the third position of the second
record, where the third bit position is after the first bit
position and assigning a ninth bit in the third bit position of
the mask to a second binary value when the seventh bit of
the first record equals the second bit of the second record.
Further, the method includes assigning a tenth bit in the third
bit position of the pattern to a value of the seventh bit of the
first record when the seventh bit of the first record equals the
eighth bit of the second record and storing the mask, the
pattern, the first compressed key, and the second compressed
key.

An embodiment database server includes a processor and
a computer readable storage medium storing programming
for execution by the processor. The programming including
instructions to receive, by the database server, from a
computer, a search key and determine if the search key
matches a pattern and a mask and determine if the search key
matches a compressed key and the mask when the search
key matches the pattern and the mask. Also, the program-
ming includes instructions to indicate a successful match
when the search key matches the compressed key and the
mask.

The foregoing has outlined rather broadly the features of
an embodiment of the present invention in order that the
detailed description of the invention that follows may be
better understood. Additional features and advantages of
embodiments of the invention will be described hereinafter,
which form the subject of the claims of the invention. It
should be appreciated by those skilled in the art that the
conception and specific embodiments disclosed may be
readily utilized as a basis for modifying or designing other
structures or processes for carrying out the same purposes of
the present invention. It should also be realized by those
skilled in the art that such equivalent constructions do not
depart from the spirit and scope of the invention as set forth
in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion, and the advantages thereof, reference is now made to
the following descriptions taken in conjunction with the
accompanying drawing, in which:

FIG. 1 illustrates an embodiment multi-dimensional
online analytical processing (MOLAP) system;

FIG. 2 illustrates another embodiment MOLAP system;

US 9,442,949 B2

3

FIG. 3 illustrates an embodiment multi-dimensional data;

FIG. 4 illustrates data compression;

FIG. 5 illustrates an embodiment page structure;

FIG. 6 illustrates an embodiment page;

FIG. 7 illustrates data compression;

FIG. 8 illustrates an embodiment method of compressing
a record;

FIG. 9 illustrates an embodiment method of searching for
a compressed key;

FIG. 10 illustrates another embodiment method of search-
ing for a compressed key;

FIG. 11 illustrates an embodiment method of searching
for a key;

FIG. 12 illustrates decompression of a compressed key;

FIG. 13 illustrates an embodiment method of decompress-
ing a compressed key; and

FIG. 14 illustrates a schematic diagram of an embodiment
of a general-purpose computer system.

Corresponding numerals and symbols in the different
figures generally refer to corresponding parts unless other-
wise indicated. The figures are drawn to clearly illustrate the
relevant aspects of the embodiments and are not necessarily
drawn to scale.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

It should be understood at the outset that although an
illustrative implementation of one or more embodiments are
provided below, the disclosed systems and/or methods may
be implemented using any number of techniques, whether
currently known or in existence. The disclosure should in no
way be limited to the illustrative implementations, drawings,
and techniques illustrated below, including the exemplary
designs and implementations illustrated and described
herein, but may be modified within the scope of the
appended claims along with their full scope of equivalents.

Multi-dimensional online analytical processing (MO-
LAP) systems store the data in a custom multi-dimensional
format. In a MOLAP system, the multi-dimensional data is
stored using a multi-dimensional index, where each fact in
the data is identified by a multi-dimensional key. The
multi-dimensional key contains individual components,
where each component is a key from one of the dimensions
for a record.

FIG. 1 illustrates embodiment MOLAP system 100.
MOLAP system 100 includes source data 106, MOLAP
level 104, and outputs 102. Source data 106 may include
enterprise resource planning (ERP) or customer relationship
management (CRM), legacy data, relational database man-
agement system (RDMBS) or OLAP, flat files or excel files,
other applications, and local data. Also, MOLAP level 104
may include data marts, which are the access layer of the
data warehouse environment that is used to get data to the
users. Outputs 102 may include dashboards, reports, ad-hoc
analysis, and spreadsheets.

In one example, MOLAP databases are stored entirely
in-memory to provide extremely fast responses to analytical
queries. FIG. 2 illustrates an in-memory MOLAP system
120. In-memory MOLAP system 120 includes outputs 114
such as dashboards and OLAPs. Also, MOLAP system 120
includes MOLAP data processing flow 124 and in-memory
storage 126. In-memory storage 126 includes dimension
store 128, which is stored in first database 134, aggregate
store 130, which is stored in second database 136, and fact
store 132, which is also stored in second database 136.

10

15

20

25

30

35

40

45

50

55

60

65

4

MOLARP systems enable analysis of data using a multi-
dimensional data model. Each fact in a MOLAP system has
a collection of business metrics or measures and a collection
of dimensional attributes. The metrics or measures are
numerical quantities denoting the performance of the busi-
ness. Examples of metrics include the number of units sold
of a specific product and revenue generated from the sale of
a specific product. Dimensions provide the context for
metrics. For example, the number of units sold is qualified
by the specific product that has been sold, the category of the
product sold, the date and time the sale has been made, the
customer who purchased the product, the store where the
sale has been made, the customer, and the department. The
data may be analyzed along different dimensions such as
products, time, customers, and store to look for specific
information that helps in measuring the performance of a
business, and that can be used to take actions to improve the
performance of the systems.

MOLARP systems store the business fact data as a collec-
tion of multi-dimensional key values where each key is
associated with a set of metrics. A multi-dimensional key is
formed by joining the dimensions and attributes that provide
the context for a business metric. FIG. 3 illustrates a leaf
page of multi-dimensional keys 170. Page of multi-dimen-
sional keys 170 includes the dimensional attributes of a time
dimension including the quarter and the month, a geography
dimension including the country and the city, a product
dimension, a shipping status dimension, and a customer
dimension. Also, multi-dimensional key 170 includes a
measure of the quantity shipped. Four records are illustrated
in the page of multi-dimensional keys 170, although more or
fewer records may be included in a page of multi-dimen-
sional keys. The rows contain the metric value and a
collection of attributes that provide a context for the metric.
The dimension values in a single row concatenated together
represent a multi-dimensional key for a record. MOLAP
systems store the data using a multi-dimensional index that
is indexed based on the multi-dimensional key values.

An example MOLAP system compresses the multi-di-
mensional keys. FIG. 4 illustrates the compression of a
record including dictionary compression and bit translation.
In dictionary compression, instead of storing each dimen-
sion value in a row, each unique value in a dimension is
assigned an encoded numeric value, and the encoded
numerical value is stored in the database. The encoding
scheme may be stored separately in a dictionary, so that the
original values can be rebuilt based on the encoded values.
Multi-dimensional key 182 is encoded to yield encoded key
184 and measures 186. For the records in the multi-dimen-
sional key 182, all of the records are in the first quarter, in
February, in Australia, with the product a motorcycle, and
shipped, so each of these fields is assigned a value of 1. The
cities includes Melbourne, which is assigned a value of 1,
South Brisbane, which is assigned a value of 2, Sydney,
which is assigned a value of 3, and Canberra, which is
assigned a value of 4. Also, the clients are either Australian
Collector, Co., which is assigned a value of 1, or the
Australian Gift Network, Co., which is assigned a value of
2. When there is a dimensional field that is not already in the
dictionary, a new dimensional value and corresponding
assigned value is added to the dictionary. For example, if
there is a new record where the location is Perth, Perth
would be assigned a value of 5, and would be added to the
dictionary. The dimensional attributes for each row is
assigned a value in encoded key 184, while the measures
186 remains unchanged.

US 9,442,949 B2

5

After dictionary compression is applied, the assigned
values are translated to bits and the dimension values in each
row are concatenated. Instead of concatenating original
dimensional values, encoded numerical values are used. In
another compression technique, while forming the multi-
dimensional keys, instead of using full byte representations
of the encoded values, only enough bits are used for each
encoded value, based on the number of unique encoded
values. The multi-dimensional keys 188 are formed by
concatenating individual bits representing encoded values
for each of the dimensions in encoded key 184.

In an example, the multi-dimensional index data is stored
in an indexing structure such as a B+ tree or a CSB+ tree.
FIG. 5 illustrates B+ tree indexing structure 190 which
contains internal pages 192 and leaf pages 194, while FIG.
6 illustrates leaf page 195, which contains a page header,
keys, and values. B+ trees, which may be used to store data
in a block oriented storage context, may have a very high
fan-out. There is a lot of redundant data in the collection of
multi-dimensional keys in a single leaf page. Also, the
multi-dimensional keys are all the same size. The multi-
dimensional keys in a single leaf page are sorted by key
value.

In an embodiment, all bits in a set of multi-dimensional
keys in a single leaf page that are common across all
multi-dimensional keys within the leaf page are factored out.
The common bits are then stored separately in the page
header as a pattern and a mask. FIG. 7 illustrates the
compression of multi-dimensional keys. Data 210 in a
concatenated bit format is masked to produce masked data
212, where the highlighted bits are common to all multi-
dimensional keys in the leaf page, while the un-highlighted
bits are different for some of the multi-dimensional keys in
the leaf page. In an example, mask 214 is created, where a
1 indicates a bit that is common to all multi-dimensional
keys, while a 0 indicates a bit that is different across the
multi-dimensional keys. Alternatively, a 0 may indicate a bit
that is the same across the multi-dimensional keys and a 1
may indicate a bit that is the different across the multi-
dimensional keys. Additionally, a pattern is created where,
for the bits that are the same across the multi-dimensional
keys, that bit has the same value as the multi-dimensional
keys. In one example, the bits of the pattern that are different
across the multi-dimensional keys are assigned a value of 0.
Alternately, the bits of the pattern that vary across the
multi-dimensional keys may have a value of 1, or may be an
arbitrary value. Also, compressed keys 218 include the bits
from the record that are different across the multi-dimen-
sional keys. In the example illustrated in FIG. 7, the bits
from columns 14, 15, 16, 27, and 28 are included in
compressed keys 218. The compressed key contains mask
214, pattern 216, and compressed keys 218.

FIG. 8 illustrates flowchart 140 of a method for com-
pressing multi-dimensional keys. In one example, the sys-
tem compresses all of the multi-dimensional keys in the leaf
page. Alternatively, the system only compresses a new
multi-dimensional key. Initially, in step 142, the system
obtains a record. The record may be a new record to be
added to the database. Next, in step 144, the system per-
forms dictionary compression on the new record. If the new
record has a dimensional value that is not already in the
dictionary, the system adds the new dimensional value to the
dictionary. Then, in step 146, the dictionary compressed key
is converted to a bit sequence, and the bit sequence is
concatenated. In one example, the bit sequence is not in byte
format, but contains only the bits that are required for the
dictionary compressed keys. After the bit sequence conver-

10

15

20

25

30

35

40

45

50

55

60

65

6

sion and concatenation, the mask, pattern, and compressed
multi-dimensional keys are determined in step 154. The
mask indicates which bits are the same for all of the
multi-dimensional keys in the leaf page. For example, a 1
may indicate that the bit is the same for all of the multi-
dimensional keys, and a 0 may indicate that the bit is
different for some of the multi-dimensional keys. For the bits
that are the same for all of the multi-dimensional keys in the
leaf page, the pattern indicates the bit values in the multi-
dimensional keys. For the bits that are different for some of
the multi-dimensional keys, the pattern may indicate a 0, a
1, or an arbitrary value. Also, the compressed multi-dimen-
sional keys contain the bit values that are different for the
different keys. Finally, in step 160, the mask, pattern and
compressed keys are stored in an indexing structure, such as
B+ tree or a CBS+ tree.

In an example, the compressed page may be searched
directly without decompressing all of the multi-dimensional
keys within a leaf page. The compressed keys as a group
retain the order of the original uncompressed keys. Two
types of searches may be performed on multi-dimensional
keys within a leaf page. One example is a search for an exact
match of a search key. Another example is a search for all
multi-dimensional keys within a page that match a specific
bit pattern. Both types of searches may be performed with-
out decompressing all the multi-dimensional keys within the
leaf page.

FIG. 9 illustrates a search for an exact match of a search
key. Initially, search key 242 is compared to mask 214 to
produce masked search key 246. In masked search key 246,
mask 214, pattern 216, and masked original data 244 the
highlighted bits indicate that those bits are the same for all
of'the multi-dimensional keys in the leaf page. Bits of search
key 242 that mask 214 indicates are the same for all of the
multi-dimensional keys in the leaf page, are compared to
pattern 216. When the masked bits of search key 242 do not
match pattern 216, none of the multi-dimensional keys on
the leaf page match search key 242, and the search may be
concluded with a result of no match found. When the
masked bits of the search key 242 do match pattern 216, the
bits of search key 242 that are not masked are compared to
compressed multi-dimensional keys 250. Compressed
search key 248 indicates the bits of search key 242 that
correspond to the bits that vary across the different multi-
dimensional keys in the leaf page. Compressed search key
248 is compared to compressed multi-dimensional keys 250.
If compressed search key 248 matches one of compressed
multi-dimensional keys 250, search key 242 matches the
multi-dimensional key corresponding to that compressed
key. For example, in FIG. 9, the compressed search key
matches the fourth multi-dimensional key. However, if com-
pressed search key 248 does not match any of compressed
multi-dimensional keys 250, search key 242 does not match
any of the multi-dimensional keys in the leaf page. There is
no need to decompress the compressed multi-dimensional
keys 250 to carry out the search, because the search is
carried out directly on the compressed multi-dimensional
keys. Because the compressed keys are all of the same size,
and the keys are ordered, binary search can be carried out if
the keys are stored consecutively in an array.

FIG. 10 illustrates a pattern search, where the objective of
the search is to find all multi-dimensional keys in a leaf page
that have a certain pattern of bits present at certain locations.
To carry out the search, search pattern 262 is masked with
common bit pattern of mask 214 to produce masked search
pattern 264. Search pattern 262 has an x for bits that are not
to be searched for, which are highlighted, and bit numbers

US 9,442,949 B2

7

for the bits to be searched for, which are not highlighted. In
masked search pattern 264, the masked bits are highlighted.
The masked bits of search pattern 262 are compared to the
bits in pattern 216. If the masked bits of search pattern 262
do not match pattern 216, then there is no match on this leaf
page. If the masked bits of search pattern 264 do match
pattern 216, as in FIG. 10, compressed search pattern 266 is
created, which contains the unmasked bits of search pattern
262. The bits of the compressed search pattern 266 that
contain a bit value are compared to compressed multi-
dimensional keys 250. There may be one match, no matches,
or multiple matches in a leaf page. In FIG. 10, there is one
match to the fourth compressed multi-dimensional key. All
of the compressed keys that match search pattern 262 are
returned as matches. There is no need to decompress all the
keys to perform when this search is performed.

FIG. 11 illustrates flowchart 220 depicting a method of
searching for a multi-dimensional key, which may be used
to search for an exact match of a search key or for a search
pattern. If the search is performed using a search pattern,
only the bits of the search pattern that have a value are
compared to the pattern or the compressed keys. Initially, in
step 222, a search key is obtained. Next, in step 224, the
search key is compared to the mask and the pattern to
determine if the mask and the pattern match the search key.
The mask and the pattern match the search key if, when the
mask is applied to the search key, the masked bits of the
search key match the masked bits of the pattern. In step 226,
it is determined if the search key matches the mask and the
pattern. If there is no match, no match is found in step 228,
the search may end. Alternatively, a new search may be
performed on another page. If there is a match, the system
proceeds to step 230, where it compresses the search key
using mask and pattern. Then it proceeds to step 232, where
it compares the compressed search key to each of the
compressed keys within the page. If there is a match, the
system, in step 234, indicates a match was found. If there is
no match, the system goes to step 238 and indicates no
match was found.

If there is a match in a search, the matched compressed
key may be decompressed. FIG. 12 illustrates flowchart 220
of the decompression of a compressed multi-dimensional
key. Compressed search key 248 is expanded to compressed
key expanded using mask 214, where the masked bits are
highlighted, in this example 1s, and the compressed multi-
dimensional key bits are placed in the unmasked slots. Then,
the masked bits of pattern 216 are added to expanded key
292, producing original multi-dimensional key 294. Original
multi-dimensional key 294 may then be expanded using a
dictionary.

FIG. 13 illustrates flowchart 300 of a method of decom-
pressing a compressed multi-dimensional key. Initially, in
step 302, the compressed multi-dimensional key is expanded
using a mask, where the compressed multi-dimensional key
fills in the unmasked bit slots of the mask. Then, in step 304,
the masked bits are filled with the values from the pattern.
Finally, in step 306, the multi-dimensional key is expanded
using a dictionary.

In another embodiment, the compression and search
methods may be applied to other systems where data is
sorted based on value. The compression and search method
may be used in any type of indexing scheme based on
composite keys, where a composite key consists of a con-
catenation of keys based on individual attributes. The com-
pression scheme may also be applied in data stored in files

5

10

15

20

25

30

35

40

45

50

55

60

65

8

using an indexing mechanism based on the composite keys
consisting of concatenation of keys based on individual
attributes.

FIG. 14 illustrates a block diagram of processing system
270 that may be used for implementing the devices and
methods disclosed herein. Specific devices may utilize all of
the components shown, or only a subset of the components,
and levels of integration may vary from device to device.
Furthermore, a device may contain multiple instances of a
component, such as multiple processing units, processors,
memories, transmitters, receivers, etc. The processing sys-
tem may comprise a processing unit equipped with one or
more input devices, such as a microphone, mouse, touch-
screen, keypad, keyboard, and the like. Also, processing
system 270 may be equipped with one or more output
devices, such as a speaker, a printer, a display, and the like.
The processing unit may include central processing unit
(CPU) 274, memory 276, mass storage device 278, video
adapter 280, and I/O interface 288 connected to a bus.

The bus may be one or more of any type of several bus
architectures including a memory bus or memory controller,
a peripheral bus, video bus, or the like. CPU 274 may
comprise any type of electronic data processor. Memory 276
may comprise any type of system memory such as static
random access memory (SRAM), dynamic random access
memory (DRAM), synchronous DRAM (SDRAM), read-
only memory (ROM), a combination thereof, or the like. In
an embodiment, the memory may include ROM for use at
boot-up, and DRAM for program and data storage for use
while executing programs.

Mass storage device 278 may comprise any type of
storage device configured to store data, programs, and other
information and to make the data, programs, and other
information accessible via the bus. Mass storage device 278
may comprise, for example, one or more of a solid state
drive, hard disk drive, a magnetic disk drive, an optical disk
drive, or the like.

Video adaptor 280 and I/O interface 288 provide inter-
faces to couple external input and output devices to the
processing unit. As illustrated, examples of input and output
devices include the display coupled to the video adapter and
the mouse/keyboard/printer coupled to the I/O interface.
Other devices may be coupled to the processing unit, and
additional or fewer interface cards may be utilized. For
example, a serial interface card (not pictured) may be used
to provide a serial interface for a printer.

The processing unit also includes one or more network
interface 284, which may comprise wired links, such as an
Ethernet cable or the like, and/or wireless links to access
nodes or different networks. Network interface 284 allows
the processing unit to communicate with remote units via the
networks. For example, the network interface may provide
wireless communication via one or more transmitters/trans-
mit antennas and one or more receivers/receive antennas. In
an embodiment, the processing unit is coupled to a local-
area network or a wide-area network for data processing and
communications with remote devices, such as other process-
ing units, the Internet, remote storage facilities, or the like.

Advantages of an embodiment include the effective com-
pression of multi-dimensional keys of a constant size within
a leaf page by removing redundancies that are present
throughout the key without significantly affecting query
performance. Also, an embodiment enables a high compres-
sion ratio that enables large amounts of MOLAP data to be
analyzed quickly by storing the data entirely in-memory.
Additionally, an example enables a fast search, because the
compressed keys may not be decompressed during search-

US 9,442,949 B2

9

ing. In an embodiment, a total compression ratio of 20:1 is
achieved, with a marginal compression ratio of 2.5:1. Also,
an embodiment enables enhanced scalability and robustness,
because additional dictionary entries can be added, but
unused additional bits can be compressed away.

While several embodiments have been provided in the
present disclosure, it should be understood that the disclosed
systems and methods may be embodied in many other
specific forms without departing from the spirit or scope of
the present disclosure. The present examples are to be
considered as illustrative and not restrictive, and the inten-
tion is not to be limited to the details given herein. For
example, the various elements or components may be com-
bined or integrated in another system or certain features may
be omitted, or not implemented.

In addition, techniques, systems, subsystems, and meth-
ods described and illustrated in the various embodiments as
discrete or separate may be combined or integrated with
other systems, modules, techniques, or methods without
departing from the scope of the present disclosure. Other
items shown or discussed as coupled or directly coupled or
communicating with each other may be indirectly coupled or
communicating through some interface, device, or interme-
diate component whether electrically, mechanically, or oth-
erwise. Other examples of changes, substitutions, and altera-
tions are ascertainable by one skilled in the art and could be
made without departing from the spirit and scope disclosed
herein.

What is claimed is:

1. A method of compressing a plurality of multi-dimen-
sional keys, the method comprising:

receiving, by a computer, the plurality of multi-dimen-

sional keys, wherein the plurality of multi-dimensional
keys has a first length;
determining a first plurality of bit slots that are common
among the plurality of multi-dimensional keys, wherein
the first plurality of bit slots is not solely a prefix;

forming a mask indicating the first plurality of bit slots
that are common among the plurality of multi-dimen-
sional keys;

forming a pattern indicating values of the first plurality of

bit slots that are common among the plurality of
multi-dimensional keys;

determining a second plurality of bit slots that vary among

the plurality of multi-dimensional keys;

forming a plurality of compressed multi-dimensional keys

indicating values of the second plurality of bit slots;
and

storing the mask, the pattern, and the plurality of com-

pressed multi-dimensional keys.

2. The method of claim 1, further comprising performing
dictionary compression on the plurality of multi-dimen-
sional keys in accordance with a dictionary.

3. The method of claim 2, further comprising:

converting the dictionary compressed plurality of multi-

dimensional keys to a plurality of bit sequences; and
concatenating the plurality of bit sequences.

4. The method of claim 3, further comprising adding a
new entry to the dictionary when one of the plurality of
multi-dimensional keys comprises a value not previously in
the dictionary.

5. The method of claim 1, further comprising performing
pattern compression on the plurality of multi-dimensional
keys.

6. The method of claim 1, wherein storing the mask, the
pattern, and the plurality of compressed multi-dimensional

15

20

25

30

35

40

45

60

65

10

keys comprises storing the mask, the pattern and the plu-
rality of compressed multi-dimensional keys in an indexing
structure.
7. A method of searching using a first search key, the
method comprising:
receiving, by a computer, the first search key;
determining whether the first search key matches a first
pattern and a first mask, wherein the first search key
matches the first pattern and the first mask when a first
plurality of bits in a first plurality of bit positions of the
first mask is a first binary value and a second plurality
of bits in the first plurality of bit positions of the first
pattern matches a third plurality of bits in the first
plurality of bit positions of the first search key;
determining whether the first search key matches both a
first compressed key and the first mask, without decom-
pressing the first compressed key, upon determining
that the first search key matches both the first pattern
and the first mask, wherein the first compressed key
indicates bits of records that are different across keys of
a plurality of multi-dimensional keys, and wherein the
first mask indicates bits that are different between the
keys of the plurality of multi-dimensional keys; and

transmitting, by the computer, a successtul match when
the first search key matches the first compressed key
and the first mask.

8. The method of claim 7, wherein the first search key
matches the first compressed key and the first mask when a
fourth plurality of bits in a second plurality of bit positions
of'the first mask is a second binary value and a fifth plurality
of bits in the second plurality of bit positions of the first
search key matches a sixth plurality of bits in a third
plurality of bit positions of the first compressed key.

9. The method of claim 8, wherein the first binary value
is 1, and wherein the second binary value is 0.

10. The method of claim 8, wherein the first binary value
is 0, and wherein the second binary value is 1.

11. The method of claim 8, wherein the first search key
comprises:

the first plurality of bits of the first mask;

the fourth plurality of bits of the first mask; and

a seventh plurality of bits of the first mask.

12. The method of claim 8, wherein the first search key
consists of:

the first plurality of bits of the first mask; and

the fourth plurality of bits of the first mask.

13. The method of claim 7, further comprising comparing
the first search key to the first mask and to a second
compressed key.

14. The method of claim 7, further comprising decom-
pressing the first compressed key upon determining that the
first search key matches the first compressed key, wherein
decompressing the first compressed key further comprises:

determining that a first bit in a first bit position of a

decompressed key has a value of a second bit in a
second bit position of the first compressed key when a
third bit in the first bit position of the first mask is a first
binary value; and

determining that a fourth bit in a third bit position of the

decompressed key has a value of a fifth bit in the third
bit position of the first pattern when a sixth bit in the
third bit position of the first mask is a second binary
value.

15. The method of claim 14, wherein the first binary value
is 0, and wherein the second binary value is 1.

16. The method of claim 14, wherein the first binary value
is 1, and wherein the second binary value is 0.

US 9,442,949 B2
11

17. A database server comprising:
a processor; and
a computer readable storage medium storing program-
ming for execution by the processor, the programming
including instructions to 5
receive, by the database server, from a computer, a
search key,
determine whether the search key matches a pattern and
a mask, wherein the search key matches the pattern
and the mask when a first plurality of bits in a 10
plurality of bit positions of the mask is a first binary
value and a second plurality of bits in the plurality of
bit positions of the pattern matches a third plurality
of bits in the plurality of bit positions of the search
key, 15
determine whether the search key matches both a
compressed key and the mask, without decompress-
ing the compressed key, upon determining that the
search key matches both the pattern and the mask,
wherein the compressed key indicates bits of records 20
that are different across keys of a plurality of multi-
dimensional keys, and wherein the mask indicates
bits that are different between the keys of the plu-
rality of multi-dimensional keys, and
transmit a successful match when the search key 25
matches the compressed key and the mask.

#* #* #* #* #*

